Ieee Transactions on Signal Processing

نویسنده

  • S. K. Halgamuge
چکیده

|Two training algorithms for self evolving neural networks are discussed for rule based data analysis. E cient classi cation is achieved with less number of automatically added clusters and application data is analysed by interpreting the trained neural network as a fuzzy rule based system. Learning Vector Quantisation algorithm has been modied acquiring the self evolvement character in the prototype neuron layer based on sub Bayesian decision making. The number of required prototypes representing fuzzy rules is automatically determined by the application data set. This method, compared with others shows better classi cation results for data sets with high noise or overlapping classi cation boundaries. The classifying Radial Basis Function Networks are generalised into Multiple Shape Basis Function Networks. The learning algorithm discussed is capable of adding new neurons representing self evolving clusters of di erent shapes and sizes dynamically. This shows a clear reduction in number of neurons or the number of fuzzy rules generated and the classi cation accuracy is increased signi cantly. This improvement is highly relevant in developing neural networks functionally equivalent to fuzzy classi ers since the transparency is strongly related to the compactness of the system. Keywords|Multiple Shape Basis Functions, Fuzzy rules, Clustering, Learning Vector Quantisation, Radial Basis Function Networks

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A message from the editor-in-chief: best paper award recipients

The IEEE TRANSACTIONS ON SIGNAL PROCESSING values the quality of its articles and is dedicated to publishing results of the highest grade and repute. In an effort to acknowledge the awardees, as well as the dedicated service of our editorial board in maintaining the high standards of the TRANSACTIONS, I am pleased to initiate a new feature in the form of a yearly column whereby award recipients...

متن کامل

A blind signal separation method for multiuser communications

In this correspondence, we reply to the comments in Gu et al. [“Comments on ‘A blind signal separation method for multiuser communications,’” IEEE Transactions on Signal Processing, vol. 55, no. 5, pp. 2355–2356, May 2007]. We explain that the global convergence analysis of the method in Castedo et al. [“A blind signal separation method for multiuser communications,” IEEE Transactions on Signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998